Information Representation and Computation of Spike Trains in Reservoir Computing Systems with Spiking Neurons and Analog Neurons
نویسندگان
چکیده
Real-time processing of space-and-time-variant signals is imperative for perception and real-world problem-solving. In the brain, spatio-temporal stimuli are converted into spike trains by sensory neurons and projected to the neurons in subcortial and cortical layers for further processing. Reservoir Computing (RC) is a neural computation paradigm that is inspired by cortical Neural Networks (NN). It is promising for real-time, on-line computation of spatio-temporal signals. An RC system incorporates a Recurrent Neural Network (RNN) called reservoir, the state of which is changed by a trajectory of perturbations caused by a spatio-temporal input sequence. A trained, nonrecurrent, linear readout-layer interprets the dynamics of the reservoir over time. Echo-State Network (ESN) [1] and Liquid-State Machine (LSM) [2] are two popular and canonical types of RC system. The former uses non-spiking analog sigmoidal neurons – and, more recently, Leaky Integrator (LI) neurons – and a normalized random connectivity matrix in the reservoir. Whereas, the reservoir in the latter is composed of Leaky Integrate-and-Fire (LIF) neurons, distributed in a 3-D space, which are connected with dynamic synapses through a probability function. The major difference between analog neurons and spiking neurons is in their neuron model dynamics and their inter-neuron communication mechanism. However, RC systems share a mysterious common property: they exhibit the best performance when reservoir dynamics undergo a criticality [1–6] – governed by the reservoirs’ connectivity parameters, |λmax| ≈ 1 in ESN, λ ≈ 2 and w in LSM – which is referred to as the edge of chaos in [3–5]. In this study, we are interested in exploring the possible reasons for this commonality, despite the differences imposed by different neuron types in the reservoir dynamics.
منابع مشابه
Information transmission with spiking Bayesian neurons
Spike trains of cortical neurons resulting from repeated presentations of a stimulus are variable and exhibit Poisson-like statistics. Many models of neural coding therefore assumed that sensory information is contained in instantaneous firing rates, not spike times. Here, we ask how much information about time-varying stimuli can be transmitted by spiking neurons with such input and output var...
متن کاملSpiking Inputs to a Winner-take-all Network
Recurrent networks that perform a winner-take-all computation have been studied extensively. Although some of these studies include spiking networks, they consider only analog input rates. We present results of this winner-take-all computation on a network of integrate-and-fire neurons which receives spike trains as inputs. We show how we can configure the connectivity in the network so that th...
متن کاملSpike-based models of neural computation
Neurons compute mainly with action potentials or “spikes”, which are stereotypical electrical impulses. Over the last century, the operating function of neurons has been mainly described in terms of firing rates, with the timing of spikes bearing little information. More recently, experimental evidence and theoretical studies have shown that the relative spike timing of inputs has an important ...
متن کاملConnectivity, Dynamics, and Memory in Reservoir Computing with Binary and Analog Neurons
Reservoir computing (RC) systems are powerful models for online computations on input sequences. They consist of a memoryless readout neuron that is trained on top of a randomly connected recurrent neural network. RC systems are commonly used in two flavors: with analog or binary (spiking) neurons in the recurrent circuits. Previous work indicated a fundamental difference in the behavior of the...
متن کاملComputing loss of efficiency in optimal Bayesian decoders given noisy or incomplete spike trains.
We investigate Bayesian methods for optimal decoding of noisy or incompletely-observed spike trains. Information about neural identity or temporal resolution may be lost during spike detection and sorting, or spike times measured near the soma may be corrupted with noise due to stochastic membrane channel effects in the axon. We focus on neural encoding models in which the (discrete) neural sta...
متن کامل